
https://doi.org/10.1177/00220345211009474

Journal of Dental Research
﻿1–7
© International & American Associations 
for Dental Research 2021
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/00220345211009474
journals.sagepub.com/home/jdr

Research Reports: Clinical

Introduction
The adenoid is an aggregate of lymphatic tissue located in the 
posterior nasopharyngeal airway. It commonly appears in early 
childhood between 6 and 10 y old and then disappears at 16 y 
old (Major et al. 2006; Yildirim et al. 2008). Adenoid hypertro-
phy, a pathological enlargement of the nasopharyngeal tonsils, 
is the most prevalent cause of nasal obstruction in childhood 
(Yildirim et al. 2008) and is associated with the “adenoid face” 
morphology featuring a narrow maxillary arch, posterior cross-
bite, retrognathic mandible, and large face height (Major et al. 
2006). According to a recent meta-analysis, adenoid hypertro-
phy prevalence is 34% in the general pediatric population and 
varies between 42% and 70% in pediatric populations (Pereira 
et al. 2018). Adenoid hypertrophy may be caused by frequent 
upper airway infections, and it often leads to nasal congestion, 
breathing through the mouth, snoring, and otitis media with 
effusion (Chien et al. 2005).

Children with adenoid hypertrophy usually present in den-
tal clinics with a chief complaint of occlusal disorder or dis-
satisfaction with their profile. Dentists typically obtain a lateral 
cephalogram in order to screen for the possibility of adenoid 
hypertrophy: the ratio of adenoid width to nasopharyngeal 
width (AN ratio) is measured on this image (Major et al. 2006), 
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Abstract
Adenoid hypertrophy is a pathological hyperplasia of the adenoids, which may cause snoring and apnea, as well as impede breathing 
during sleep. The lateral cephalogram is commonly used by dentists to screen for adenoid hypertrophy, but it is tedious and time-
consuming to measure the ratio of adenoid width to nasopharyngeal width for adenoid assessment. The purpose of this study was to 
develop a screening tool to automatically evaluate adenoid hypertrophy from lateral cephalograms using deep learning. We proposed 
the deep learning model VGG-Lite, using the largest data set (1,023 X-ray images) yet described to support the automatic detection of 
adenoid hypertrophy. We demonstrated that our model was able to automatically evaluate adenoid hypertrophy with a sensitivity of 
0.898, a specificity of 0.882, positive predictive value of 0.880, negative predictive value of 0.900, and F1 score of 0.889. The comparison 
of model-only and expert-only detection performance showed that the fully automatic method (0.07 min) was about 522 times faster 
than the human expert (36.6 min). Comparison of human experts with or without deep learning assistance showed that model-assisted 
human experts spent an average of 23.3 min to evaluate adenoid hypertrophy using 100 radiographs, compared to an average of 36.6 min 
using an entirely manual procedure. We therefore concluded that deep learning could improve the accuracy, speed, and efficiency of 
evaluating adenoid hypertrophy from lateral cephalograms.
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which allows the clinician to determine whether the adenoid is 
pathologically enlarged or not (Elwany 1987). If deemed 
pathologically enlarged, the patient is typically subjected to 
more extensive otorhinolaryngology follow-up for definitive 
diagnosis and may accept adenoidectomy operation. Therefore, 
dentists should attach great importance to the concept of a cor-
rect early screen of adenoid hypertrophy, which is helpful for 
preventing any associated craniofacial consequences. During 
evaluation of children with suspected adenoid hypertrophy 
based on lateral cephalograms, dentists need to label land-
marks on the cephalogram in order to measure the AN ratio, 
which is time-consuming, tedious, and experience dependent. 
According to the latest World Health Organization (WHO) 
report, the dentist-to-population ratio was 4.46:10,000 in China 
in 2017 (World Health Organization 2017). An excessive num-
ber of patients with a relatively small number of dentists has 
resulted in high workload. Therefore, there is an urgent need to 
develop a fully automated evaluation method to improve work 
efficiency and alleviate work burden of dentists.

Deep learning is a method of machine learning based on 
neural networks (LeCun et al. 2015). Deep learning has been 
shown to perform better than traditional machine learning 
algorithms on many computer vision tasks, such as classifica-
tion, segmentation, and detection (Ronneberger et al. 2015; 
Redmon et al. 2016). Of these, classification is one of the tasks 
to which deep learning is most often applied (Ali et al. 2020; 
Kim and Kim 2020; Rajasree et al. 2020; Yousef et al. 2020), 
particularly for disease diagnosis based on medical images 
(Bhatele and Bhadauria 2020). Recently, many deep learning–
based methods have been applied to automatic disease diagno-
sis. For example, 1 study applied the YOLO model to detect 
odontogenic cysts and tumors of the jaw in panoramic radio-
graphs with a precision value of 0.707 and a recall value of 
0.680 (Yang et al. 2020). A deep learning method has also been 
applied to orthodontic diagnosis, offering sensitivity, specific-
ity, and accuracy over 90% for vertical and sagittal skeletal 
diagnosis (Yu et al. 2020). So far, only 1 study has applied deep 
learning for diagnosis of adenoid hypertrophy (Shen et al. 
2020). Those investigators collected a total of 688 X-ray 
images of patients with adenoid hypertrophy and divided them 
into 3 groups for training (488 images), validation (64 images), 
and testing (116 images). After training, their deep learning 
model produced 4 landmarks for adenoid-nasopharynx mea-
surement on X-ray images and showed a moderate F1 score of 
0.624 under pretrained conditions or 0.545 not under pretrained 
conditions. Such landmark localization method based on deep 
learning algorithms has been widely investigated, and research-
ers were committed to minimize the errors and bias associated 
with landmark identification (Dot et al. 2020; Lee et al. 2020; 
Noothout et al. 2020). In view of the unavoidable localization 
error, we reasoned that improvement in methodology, which 
eliminated the process of landmark identification, was needed 
to improve the performance of the evaluation with less manual 
intervention.

Therefore, in the present study, we proposed a novel  
and simplified deep learning model, VGG-Lite, for fully 

automated evaluation of adenoid hypertrophy based on the 
convolutional neural network architecture VGG16 (Guari  
et al. 2019). We built a larger data set hitherto with 1,023 
X-ray images for training, validation, and testing. We com-
prehensively evaluated the performance of our deep learning 
method for automated detection of adenoid hypertrophy. The 
present work extended the literature in several ways. Few 
studies have reported on direct detection of adenoid hyper-
trophy on X-ray images with deep learning, and none has 
used such a large data set, which contains more than 1,000 
samples. The model that we proposed was able to accurately 
classify radiographs into those showing normal adenoid or 
pathological adenoid hypertrophy without any manual inter-
vention. To our knowledge, the present study is the first 
attempt to comprehensively evaluate the performance of 
deep learning for direct detection of adenoid hypertrophy. 
By eliminating the landmark identification process, we 
expected to accelerate the evaluation process and develop a 
powerful tool for children who should be referred to otolar-
yngologists for surgery.

Materials and Methods

Study Population and Image Data Set

All experimental procedures involving human X-ray images 
were approved by the West China Hospital of Stomatology 
Ethics Committee (WCHSIRB-D-2020-409), in Chengdu, 
Sichuan, China. X-ray images were retrospectively examined 
for 2,016 patients who had initially visited our hospital between 
January and December 2019. Details about the cephalometric 
radiographs are given in the Appendix.

Figure 1A depicts the manual measurement for calculation 
of the adenoidal-nasopharyngeal ratio. Further detail on the 
cephalometric analysis of adenoid is available in the Appendix. 
According to the research of Elwany et al. (1987), a value of 
the AN ratio greater than 0.73 may be regarded as indicative of 
pathological adenoid hypertrophy. In our research, all X-ray 
images were manually labeled as “pathological adenoid hyper-
trophy” (AN ratio >0.73) or “normal adenoid” (AN ratio 
≤0.73) by 2 experienced orthodontists (J.L. and W.L., with 
more than 5 y of experience) blinded to each other. To reduce 
the potential influence of subjectivity on outcome, the 2 ortho-
dontists were trained several times prior to the trial to ensure 
consistency of data acquisition. A third senior orthodontic spe-
cialist (Z.Z., with 30 y of experience) was consulted in cases of 
disagreement. If the 3 experts still could not get an agreement, 
the confusing image would be excluded.

Among the 2016 cephalometric radiographs, we excluded 
low-quality images (783 images) and eliminated 210 images in 
which the occipital slope was difficult to recognize. Finally, a 
total of 1,023 X-ray images of patients were included in the 
study (505 normal adenoids and 418 cases of pathological ade-
noid hypertrophy). Patients were randomly divided into 2 
groups: a training set (923 images) and a testing set (100 
images).
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Deep Learning Model for Diagnosis  
of Adenoid Hypertrophy

The VGG16 model has demonstrated excellent  
performance for image classification and can  
potentially be used to classify medical images 
(Krizhevsky et al. 2017; Guari et al. 2019). 
However, it is designed for big data sets like the 
ImageNet data set and has so many parameters that 
the model can easily overfit the training set 
(Mummadi et al. 2018). Details about the method of 
relieving overfitting and VGG-Lite configuration 
are summarized in Table 1 and the Appendix. The 
model architecture is shown in Figure 1B.

Statistical Analysis and Evaluation Criteria

All statistical analyses were done with the IBM SPSS 
statistical software Version 20.0. To compare the per-
formance of the 2 deep learning models (VGG16 and 
VGG-Lite), we used the metrics of sensitivity (SEN), 
specificity (SPEC), positive predictive value (PPV), 
negative predictive value (NPV), F1 score, receiver 
operating characteristic (ROC) curves, and the area 
under ROC curve (AUC). The Appendix includes the 
details of metrics.

To compare the performance of VGG-Lite model 
and human experts, the other 3 orthodontic special-
ists (C.Z., D.J., and Y.L., with more than 5 y of 
experience) and VGG-Lite model detected the same 100 X-ray 
images selected from testing set. The agreements between 
model and experts were evaluated by Cohen’s κ. Two weeks 
later, the 3 orthodontic specialists (C.Z., D.J., and Y.L.) 
detected the 100 radiographs selected from testing test with the 
aid of VGG-Lite model. For 1 radiograph, experienced ortho-
dontists confirmed whether the screening result generated by 
the model was consistent with the subjective visual assessment 
of them. If not, the orthodontists would define the radiograph 
according to measurement of the AN ratio.

To assess the interobserver and intraobserver agreement, 
randomly selected 150 cephalometric radiographs (not in the 
testing set) were evaluated by the 3 experts (C.Z., D.J., and 
Y.L.) and then revaluated after 2 wk. Fleiss’s κ (Fleiss 1971) 
was used to assess interobserver agreement, while Cohen’s κ 
(Cohen 1960) was applied to assess intraobserver reliability.

Results

Deep Learning Model

Demographic and clinical characteristics of the patients 
included in the study are shown in Table 2. All experiments 
were performed using Python 3.6 and TensorFlow 1.9 on a 
single NVIDIA RTX 2080Ti (Abadi 2016). We proposed an 
advanced model—namely, VGG-Lite—for automatic diagno-
sis of adenoid hypertrophy based on VGG16. According to the 

5-fold cross-validation method, we randomly selected one-
fifth of the training set as a validation set. We performed the 
cross-validation procedure on this validation set during model 
training. In the training phase, we used a learning rate of 0.001 
and a batch size of 150 in the Adam optimizer, and then we 
chose the “cross-entropy” as the loss function. The epoch num-
ber was set to 100 for model training. According to the 

Figure 1.  Overview of manual labeling process and the deep learning model 
architecture. (A) Example of manual measurement for calculation of the adenoidal-
nasopharyngeal ratio (AN ratio, where A is the absolute size of the adenoid and N 
is the size of the nasopharyngeal space) on a standard lateral skull radiograph. The 
red line is tangential to the basiocciput. The adenoidal value A is obtained by drawing 
a perpendicular line to the red line at the point of maximal adenoid tissue. The 
nasopharyngeal value N is made between the posterior border of the hard palate 
(P) and the anteroinferior aspect of the spheno-basioccipital synchondrosis. (B) 
Architecture of the VGG-Lite model.

Table 1.  VGG-Lite Configuration.

Structure of VGG-Lite Configuration Information

Convolutional layer 1 Kernel size = 5 × 5, stride = 1, 
kernel number = 10

Max-pooling Pooling size = 2 × 2
Convolutional layer 2 Kernel size = 3 × 3, stride = 1, 

kernel number = 20
Max-pooling Pooling size = 2 × 2
Convolutional layer 3 Kernel size = 3 × 3, stride = 1, 

kernel number = 30
Max-pooling Pooling size = 2 × 2
Convolutional layer 4 Kernel size = 3 × 3, stride = 1, 

kernel number = 40
Max-pooling Pooling size = 2 × 2
Convolutional layer 5 Kernel size = 3 × 3, stride = 1, 

kernel number = 50
Max-pooling Pooling size = 2 × 2
Convolutional layer 6 Kernel size = 3 × 3, stride = 1, 

kernel number = 60
Fully connected layer  

with Softmax
Node number = 2
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performance of the validation set, the highest performance 
appeared from 50 to 60 epochs. We saved the model when the 
highest performance appeared first. Representative examples 

of automatic diagnosis for adenoid hypertrophy are 
shown in Figure 2B. The VGG16 achieved a sensi-
tivity of 0.8750, specificity of 0.8462, PPV of 
0.840, NPV of 0.8800, and F1 score of 0.8571. The 
VGG-Lite achieved a sensitivity of 0.8980, speci-
ficity of 0.8824, PPV of 0.8800, NPV of 0.9000, 
and F1 score of 0.8889 (Table 3). The ROC curves 
and the AUCs are provided in Figure 2A with 
VGG-Lite of 0.946 and VGG16 of 0.913.

Comparison of Model Performance 
and Expert-Only Detection

The deep learning model showed a strong ability to 
learn features from X-ray images through manu-
ally annotated samples. Our model showed a very 
close performance to expert-only diagnosis, based 
on the F1 score (Table 3). The κ values were found 
to be 0.86 (C.Z. vs. model), 0.90 (D.J. vs. model), 
and 0.88 (Y.L. vs. model). Our model showed val-
ues of SEN, PPV (reflected in the F1 score), SPEC, 
and NPV similar to those of human experts. The 
execution time of the deep learning model was 
0.07 min for observing 100 images, while a human 
expert needed an average of 36.6 min to observe 
100 X-ray images and perform a diagnosis (Table 
3). Our experimental results demonstrated that the 
fully automatic method was about 522 times faster 
than the human expert.

Comparison of Human Experts with 
or without Deep Learning Assistance

To comprehensively evaluate the applicability of 
our deep learning model, we compared human-
only and human-machine diagnosis of adenoid 
hypertrophy. Deep learning–assisted human experts 
(n = 3) required an average of 23.3 min for detec-
tion in the testing set (100 images), which was sig-
nificantly more efficient than manual diagnosis 
only (36.6 min). Furthermore, deep learning 

slightly improved the accuracy of diagnosis: F1 score was 
increased by 2.78% with deep learning assistance (Table 3).

Interobserver and Intraobserver Agreement

Fleiss κ value of 3 human experts was 0.956. Cohen κ values 
were 0.973 (expert 1, C.Z.), 0.960 (expert 2, D.J.) and 0.947 
(expert 3, Y.L.).

Discussion
Children with adenoid hypertrophy usually present in dental 
clinics with a chief complaint of occlusal disorder or dissatis-
faction with their profile. The golden standard method defined 
in the diagnosis of adenoid hypertrophy was nasal fiberoptic 
endoscopy (Abdollahi-Fakhim et al. 2008). Although it can 

Table 2.  Clinical and Demographic Characteristics of the Study 
Patients.

Characteristic
Training Set  

(n = 923)
Testing Set  
(n = 100)

Age, median (range), y 9.04 (4–11) 9.08 (5–11)
Sex, n (%)
  Male 412 (44.6) 42 (42.0)
  Female 511 (55.4) 58 (58.0)
Clinical evaluation, n (%)
  Pathological adenoid hypertrophy 468 (50.7) 50 (50.0)
  Normal adenoid 455 (49.3) 50 (50.0)

Figure 2.  Overview of experimental results. (A) Receiver operating characteristic 
(ROC) curves and the area under the curves (AUCs) are represented in parentheses. 
Images of the adenoid region: images 1 to 5 are pathological samples; images 6 to 
10, normal adenoid samples. (B) Representative examples of VGG-Lite prediction of 
adenoid hypertrophy based on lateral cephalograms. Probability of model prediction: red 
means that the model classified the sample as pathological; green, as normal adenoid.
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provide invaluable diagnostic information, it is not suitable for 
screening in dental clinics since it is too expensive and time-
consuming compared with X-ray examination. Many studies 
proved the high reliability of cephalometric radiographs when 
detecting adenoid hypertrophy (Moideen et al. 2019; Soldatova 
et al. 2020). Hence, in this study, we proposed a practical and 
simplified deep learning model, VGG-Lite, for automated 
evaluation of adenoid hypertrophy based on cephalometric 
radiographs. We show that VGG-Lite is able to detect adenoid 
hypertrophy with high accuracy and reduce the time to diagno-
sis, which could be served as a reliable screening tool for 
referral.

Many studies have reported that deep learning methods 
have impressive learning capacity and classification accuracy 
for automatic diagnosis of diseases such as cancer, caries 
lesions, and diabetic retinopathy and for other medical applica-
tions (Cantu et al. 2020; Liu et al. 2020; Sarao et al. 2020). 
However, few studies have focused on diagnosis of adenoid 
hypertrophy based on deep learning. In this article, we observed 
that our deep learning model showed good ability to learn and 
detect adenoid hypertrophy after training with professionally 
annotated cephalometric images. Our data showed that our 
method performed similarly to human experts based on stan-
dard classification metrics with faster detection speed.

A previous study applied deep learning for keypoint local-
ization on lateral cephalometric images for automatic diagno-
sis of adenoid hypertrophy (Shen et al. 2020). Those researchers 
measured the AN ratio according to landmarks generated by 
deep learning. In that work, deep learning achieved direct clas-
sification with an F1 score of 0.624. We reasoned that relying 
on keypoint localization rather than direct classification may 
be caused by the limited performance of the model with a 
small, imbalanced data set (68 normal samples vs. 488 hyper-
trophic samples). Errors in the keypoints method are wide-
spread, necessitating time-consuming manual correction. 
Hence, the method of direct classification produced by deep 
learning appears to be more practical and efficient for clinical 
applications. To obtain the best performance of the deep learn-
ing model, we assembled a balanced data set with comparable 
numbers of nonpathological and pathological X-ray images for 
training and testing (505 normal samples vs. 518 hypertrophic 

samples). Another model for diagnosis of adenoid face from 
photographs has been proposed based on traditional machine 
learning (Hu et al. 2019). Those researchers used an existing 
face detection software, Dlib, to extract the facial feature points 
in patient photographs. Subsequently, machine learning mod-
els were trained using these points and used to predict adenoid 
face in photographs of new patients. The best performance of 
traditional machine learning (support vector machine) applied 
by Hu et al. (2019) achieved a sensitivity of 0.882 and a speci-
ficity of 0.703. Our model showed a better performance in both 
sensitivity (0.898) and specificity (0.882). Moreover, our 
model did not require extra steps of feature extraction for train-
ing or prediction. In the present study, we assembled what 
appears to be the largest data set so far to support automatic 
diagnosis of adenoid hypertrophy. We also verified the effec-
tiveness of deep learning for assisting human experts.

In the past 5 y, many physicians have started to apply deep 
learning to various medical applications. Deep learning tech-
nology is expected to be possibly one of the most clinically 
applicable classification methods (Casalegno et al. 2019; Yu  
et al. 2020). The main reason is that manual error correction is 
easier in classification tasks than in other types of tasks, such 
as segmentation and keypoint localization. With time, more 
samples with incorrect prediction can be found and added to 
the training set to improve the performance of the deep learn-
ing model. Therefore, model performance may further 
improve with clinicians’ usage time. At the same time, classi-
fication tasks may be more amenable to deep learning than 
nonclassification tasks such as segmentation and keypoint 
localization. This condition might be explained by problems 
with nondeterministic error. For deep learning, it is impossible 
to use manual error correction to improve model performance 
in segmentation and other tasks. Hence, in this study, we 
decided to use deep learning to classify X-ray images to obtain 
the diagnostic conclusions rather than perform other types of 
tasks to diagnose. The structure of the model is required to be 
comprehensively considered for different data sets. Data sets 
in the medical field are different from and smaller than many 
data sets collected in daily life. At the same time, typical deep 
learning models have a large number of parameters. Hence, 
overfitting problems occur widely in various applications of 

Table 3.  Performance of Human Experts and Model for Adenoid Hypertrophy Detection in the Testing Set.

Pathological Normal
Time to 

Diagnosis, 
min Operator Method

True 
Positive

False 
Positive

True 
Negative

False 
Negative SEN SPEC PPV NPV F1 Score

VGG16 Automatic 42 8 44 6 0.8750 0.8462 0.8400 0.8800 0.8571 0.13
VGG-Lite Automatic 44 6 45 5 0.8980 0.8824 0.8800 0.9000 0.8889 0.07
Expert 1 Manual 42 8 47 3 0.9333 0.8545 0.8400 0.9400 0.8842 36.7
  VGG-Lite assisted 45 5 47 3 0.9375 0.9038 0.9000 0.9400 0.9184 21.1
Expert 2 Manual 44 6 46 4 0.9167 0.8846 0.8800 0.9200 0.8980 37.2
  VGG-Lite assisted 46 4 47 3 0.9388 0.9216 0.9200 0.9400 0.9293 24.9
Expert 3 Manual 45 5 44 6 0.8824 0.8980 0.9000 0.8800 0.8911 35.9
  VGG-Lite assisted 45 5 46 4 0.9184 0.9020 0.9000 0.9200 0.9091 23.8

NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPEC, specificity.
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deep learning if typical models are trained using small data 
sets. To avoid problems of overfitting, we developed in this 
work a Lite model based on VGG16. Our model with fewer 
parameters performed better than the VGG16 model with more 
parameters.

The reason why we applied classification model VGG 
rather than an image detection model like YOLO was argued as 
follows: the output of the VGG model is the probability of 
every category in terms of the X-ray image as input, but the 
image detection model needs human experts to record the loca-
tion of the adenoid region on every X-ray image and label the 
detection result of every region. Regarding the detection of 
adenoid hypertrophy, the region of adenoid is fixed on the cen-
ter of original X-ray images. We can crop this region on the 
X-ray images easily instead of dynamically detecting the 
region of adenoid using the YOLO model with potential region 
detection error. Besides, in this study, our model was trained by 
the region of adenoid, which was cropped from the original 
X-ray images. In image processing, a method based on the 
region of interest (ROI) is a common way for model construc-
tion. The ROI-based method has some advantages. First, com-
pared to the original X-ray image, ROI provides enough 
information for evaluation with less data as input. The ROI 
with a smaller size reduces memory overhead. Second, deep 
learning is a resource-consuming method in memory and cal-
culation. The input image with high resolution requires more 
computational workload and memory resource. Therefore, we 
suggest that extra preprocessing, such as ROI extraction, is 
required as it is resource-friendly.

Nevertheless, our study presents several limitations. First, 
some images were annotated incorrectly during the building of 
the data set, so further manual data cleaning is necessary for 
this work. This should be feasible, given that our data set has 
only around 1,000 X-ray images. Future work on automatic 
data cleaning will be very meaningful for medical applications 
based on deep learning when an extremely large data set is 
used. Second, our 1,023 X-ray images were produced by Pax-
400C and Morita X550 at 2 resolutions. Our model may not be 
robust at other resolutions, which should be addressed in the 
future through appropriate expansion of the training set with 
images at other resolutions. Third, similar to other dental stud-
ies, our research had to use multiple human annotators to inde-
pendently evaluate the adenoid on cephalometric images, since 
radiologic evaluation of different orthodontists unavoidably 
tends to be subjective (Schwendicke et al. 2021). Therefore, 
inevitable subjectivity in radiologic evaluation may affect the 
results, which posed a limitation on our study.

Conclusions
We show that deep learning methods can automatically detect 
pathological adenoid hypertrophy with higher accuracy and 
faster speed than manual diagnosis. A Lite model based on a 
typical deep learning structure showed good performance for 
automatic diagnosis of adenoid hypertrophy based on medical 
images. Deep learning may be a useful tool for relieving  

dentists’ workload of early screen and improving diagnostic 
accuracy in adenoid hypertrophy.
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